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Abstract

This study uses the Svensson (1994) method to estimate quarterly Government of Jamaica (GOJ)

Zero-Coupon yield curves from March 2014 to March 2016. The Svensson (1994) method of

estimation was used to obtain the parsimonious yield curve. The estimated spot rate curve is

then incorporated into an interest rates stress testing framework to assess the impact on portfolio

holdings of parallel and non-parallel shifts of the yield curve. The results of the stress testing

exercise show that exposure to parallel shifts of the curve were higher across the respective market

participant groups relative to non-parallel shifts.

Additionally, DTIs and securities dealers were more vulnerable to shifts in medium term seg-

ment of the yield curve. The life insurance sub-sector was more vulnerable to the long end of the

yield curve while the general insurance sub-sector exposures were equally weighted across the short

to medium term segment of the curve.
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1 Introduction

The yield curve depicts the relationship between bond yields against their maturity. It can be

used as a benchmark for pricing bonds and in value analysis more generally. In practice, the

estimation of a yield curve is often derived from observations of market prices in the government

debt market. The use of the government’s debt portfolio may be attributable to the fact that in

most jurisdictions the government is the largest issuer of bond; coupled with the perceived risk

profile - theoretically risk free and practically low risk. The yield curve is also a useful indicator

for central banks as they are able to capture changes in market expectations of macroeconomic

conditions, monetary policy and investors risk preferences.

In light of the aforementioned, this study addressed two objectives. Firstly, a yield curve for the

period 2014Q1 to 2016Q1 is estimated using Government of Jamaica (GOJ) domestic issued JMD

denominated bonds. To accomplish this objective, the study used the Svensson (1994) parametric

model to infer GOJ’s yield curve from domestic bond prices. The choice of Svensson model was

motivated by the increased flexibility of the curve while maintaining the parametric properties of

the curve that provides sound economic intuition. The estimation of GOJ yield curve is motivated

by Kladivko (2010) who uses the Nelson-Siegel model for Czech Treasury yield curve from 1999 to

the present and Gurkaynak, Sack, and Wright (2006) who use the Svensson model to estimate the

U.S. Treasury curve from 1961 to the present. Further motivation for this paper was garnered from

Langrin (2007) who estimated multi-factor versions of the Vasicek (1977) and the Cox, Ingersoll

and Ross (CIR; 1985) models of term structure of interest rates for GOJ zero-coupon bond prices.

The estimation by Langrin (2007) was conducted via state space modelling on daily GOJ domestic

bond yields from 24 September 2004 to 28 July 2006 obtained from Bloomberg. Unlike Langrin

(2007), which relies on an affine diffusion term structure modelling, this study relies on a cross-

sectional approach to estimate the GOJ domestic zero-coupon yield curve.

Secondly, since interest rate risk can be captured by changes in the yield curve, this study

considers estimation of the key rate durations of the GOJ’s domestic bond portfolio. The study

further assesses the impact of shifts in the yield curve guided by the key rate duration model on

portfolio holding of domestic issues by market participant groups.

This approach adds to the existing work of Tracey (2009) who employs principal component
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analysis and key rate durations for assessing interest rate risk of holdings of both local and global

GOJ bonds by Jamaica’s banking sector.

This study is organized as follows: section 2 reviews the fundamental concepts of the yield

curve; section 3 presents the Svensson modelling framework; section 4 provides an overview of

the data used in model including a detailed discussion of inherent issues; section 5 presents the

results of the estimation, including an assessment of the fit of the curve; section 6 demonstrates the

application of the key rate duration model in assessing the impact of yield curve shifts on portfolio

holdings of JMD denominated domestic government issues for existing market participant groups

in Jamaica’s financial system; and section 7 concludes.

2 Yield Curve Basics

This section provides a review of the fundamental concepts of bond pricing and the development

of a yield curve.

2.1 The Discount Function and Zero-Coupon Yields

The pricing of a bond is conditional on the present value of its future cash flows. The interest rate

or discount function used to calculate the present value depends on the yield offered on comparable

securities in the market. The discount function is used to maintain real value across the time, i.e.,

time value of money. In theory, the application of the discount function to value a zero-coupon

bond that pays $1 in n years can be written as:

Pt = δt(n) = e−rt(n) × n, (1)

where δt(n) denotes the continuous discount function as at time t and rt(n) is the continuously

compounded rate of return (yield) demanded by the investor for holding such investment until n

periods ahead of time t (n denotes the time to maturity). The subscript t denotes the variability

of the discount function. From equation (1) above, one may apply the necessary transposition to

get an expression for the continuously compounded yield (spot rate) on the zero-coupon bond:

rt(n) =
−ln(δt(n))

n
. (2)
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In applying the concept of compounding to bond pricing, one may consider expressing yields

on a coupon-equivalent basis. In this case the compounding may be assumed to be m times

per year instead of being continuous (e.g. semi-annual compounding implies that m = 2, the

payment of coupon is 2 times per year). Thus we express the relationship between the continuously

compounded yield and the m-compounded coupon-equivalent as

rt(n) = m× ln(1 +
rcet (n)

m
) (3)

where
rcet (n)

m
denotes the coupon-equivalent yield compounded m times per year. Similarly, the

discount function is expressed as

δt(n) =
1

(1 +
rcet (n)

m
)m×n

. (4)

Thus the relation between yields and coupon equivalent yields creates ease of mobility between

continuously compounding and its coupon equivalent counter parts. The relationship between

yields and maturities are captured by the yield curve.

2.2 Coupon Bond and the Par Yield Curve

Similar to zero-coupon bonds, the pricing of a coupon bearing bond is conditional on the discount

function; thus the price is the sum of the discounted future cash flows of the bond. For illustration,

consider the price of a coupon-bearing bond with nominal value of 100 and coupon payment of $C

(C= 100c
m

) that matures in exactly n years from time t as follows:

Pt(n) =
m×n∑
i=1

Cδt(i/m) + 100δt(n), (5)

where δt(i), i = 1, 2, ..., n are discount functions for their respective maturities. Note that the yield

on a coupon-bearing bond is dependent on the coupon rate that is assumed. One implication of

this condition, as pointed out by Gurkaynak et al., (2006), is the disparity in the yields of bonds

with identical maturities but varying coupon values.

The yields on a coupon bearing bond can be expressed in terms of par yields. A par yield may

be defined as the coupon rate at which a bond with a specific maturity would be traded at par,

that is, the rate at which the present value of the bond is equivalent to its nominal value. Hence,
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given a coupon bearing bond with a nominal value of $100 and maturity n, the par yield is obtain

as follows:

100 =
100ct(n)

m

m×n∑
i=1

δt(i/m) + 100δt(n), (6)

where ct(n) denotes the n year par yield. From the equation above the par yield can be expressed

as

ct(n) =
m(1− δt(n))∑m×n
i=1 δt(i/m)

. (7)

The par yield serves as a proxy for the quotation of yield on a coupon bearing bond by financial

market participants (Gurkaynak, Sack and Wright, 2006). As discussed, the yield curve, once

estimated, may be presented as a zero coupon yield curve or a par yield curve. The curvature of

the yield curve will reflect the sensitivity of bond prices to interest rates and is measured by the

bonds duration and convexity.

2.3 Duration and Convexity

The duration of a bond is a measure of the sensitivity of a bond’s value to changes in interest rates.

This measure, modified duration, can easily be derived from the Macaulay duration methodology.

Frederick Macaulay (1938) defines duration (coined as the Macaulay duration) on coupon-bearing

bond as the weighted average of the time (in years) that the investor must wait to receive their

cash flows , that can be a expressed as:

D =
1

Pt(n)

(m×n∑
i=1

i

m

c

m
δt(i/m) + nδt(n)

)
(8)

where c
m

denotes the annual coupon payment compounded m times per year for a bond instrument.

Bonds that pay coupon has a duration that is less than its maturity while for the case of a zero-

coupon bond, its duration is equal to its maturity. From equation (8) it is observed that for

constant maturity and spot rate, the modified duration is inversely related to the coupon rate, i.e.

higher coupon rate results in shorter duration for a given maturity. In the context of application,

the modified duration is mostly consider. Unlike the Macaulay duration, the modified duration

primarily assumes that the expected cash flow of the bond does not change when the yield changes.
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The modified duration can be defined in terms of the Macaulay duration as the duration of the

bond divided by one plus the yield on the bond (for a selected compounded period):

DM =
D

(1 +
rcet
m

)
. (9)

Duration in general captures a linear relationship between price changes and yield change. Thus the

measure is accurate for changes in bond price relative to small changes in yield. The nonlinearity

of the relationship between bond prices and yield to maturity impedes on the accuracy of the

duration measure to capture effective price changes relative to large changes in yield. The nonlinear

relationship between price and yield to maturity is effectively accounted for in the measure of

convexity. So in a simplistic point of view, convexity is used to measure the portion of the bond

price change relative to the change in the yield to maturity that is not accounted for in the

duration measure. This can be depicted through the second-order Taylor approximation of bond

price changes with respect to yield,

∆Pt(n)

Pt(n)
≈ −DM∆yt +

1

2
C(∆yt)

2 (10)

where C = 1
Pt(n)

d2Pt(n)

dy2t
is the convexity of the bond. Convexity accounts for the uncertainty in

yields observed at the long end of the yield curve which results in the yield curve depicting a

concave shape. An implication of this is that the capital gain from a decline in the yield is higher

than the capital loss from an increase in the yield. Notably, bonds with longer maturity portraying

higher convexity results at times in what is referred to as convexity bias. The greater the convexity

bias is, the more concave the yield curve will become. More details of the impact of convexity on

the functional form of the yield curve are provided below.

3 Model Selection and Overview

The modelling of a yield curve can be broadly categorized into two groups: 1) parsimonious models

and 2) spline-based models ( see Waggoner, 1994). Between the two groups one has to decide on

their preference in regard to the trade-off between accuracy which is an advantage of the latter

and smoothness which is an advantage of the prior.
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The Bank for International Settlements (BIS, 2005) reports that nine out of thirteen central

banks which report their yield curve estimates to the BIS use the parsimonious approach. The

popularity of parsimonious models among central banks may be attributed to the inherent property

of the parsimonious approach in providing sufficiently smooth yield curves which are consistent

with underlying macroeconomic conditions and investors’ preferences. Spline-based methods on

the other hand provide a richer precision in the fitting of the curve and is a preferred choice if

one is interest in small pricing anomalies. However, spline-based yield curves may not be smooth

enough and may oscillate considerably over daily intervals (Kladivko, 2010).

In this paper the parsimonious approach to estimating the yield curve for Jamaica was adopted.

Under this framework, the Nelson-Siegel (Nelson and Siegel, 1987) and Svensson (Svensson, 1994)

models are presented throughout the remainder of this section.

In their seminal work on yield curves, Nelson and Siegel (1987) assumed that the functional

form for the instantaneous forward rate is the solution of a second-order differential equation whose

roots are equal:

f(τ) = β0 + β1e
−λτ + β2λτe

−λτ (11)

where f(τ) is the instantaneous forward rate for the τ periods ahead, θ = (β0, β1, β2, λ) is a vector

of parameters to be estimated. equation (11) may be classified as a three component exponential

function. The first component β0 is known as the level and may be defined as the limit of the

forward rate as τ tends to infinity (i.e. the asymptotic rate at which the forward rate and spot

rate converges).The second component, β1e
−λτ , controls the slope of the forward rate curve and

is a monotonically decreasing term (if β1 is positive) or increasing term (if β1 is negative). The

third component, β2λe
−λτ controls the location and size of the hump in the forward rate curve (β2

determines the magnitude and sign of the hump while λ determines the location of the hump).

Integrating equation (11) (with respect to τ) from 0 to τ and dividing the outcome by τ we

get the continuously compounded spot rate curve:

ic(τ) = β0 + β1

(
1− e−λτ

λτ

)
+ β2

(
1− e−λτ

λτ
− e−λτ

)
(12)

where the subscript c denotes continuity. From equation (12), one can compute the corresponding

discount function by applying the established relationship:
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δ(τ) = e−ic(τ)τ . (13)

The discount function can be used to price outstanding issue with specific coupon rate and ma-

turity dates. The asymptotic properties of the model provides rich economic intuition. The curve

(forward or spot) by definition converges to finite limits from both ends. Note that:

lim
τ→∞

f(τ) ≡ lim
τ→∞

ic(τ) = β0 (14)

and

lim
τ→0

f(τ) ≡ lim
τ→0

ic(τ) = β0 + β1. (15)

From the above limits, we observe that the instantaneous forward and spot rates can be approx-

imated as the sum of the β0 and β1 while β0 is an approximation of the long-run rate (aka the

steady-state level). Fitting the long-end of the term structure of the yield curve may be difficult

as the convexity effects on bonds tends to pull down the yields on longer maturities (Gurkaynak

et al. 2006). Gurkaynak et al. (2006) highlighted that the Nelson-Siegel specification tends to

have forward rates asymptote too quickly to be able to capture the convexity effects at longer

maturities.

The Nelson-Siegel model was later extended by Svensson (1995) through the inclusion of an

additional exponential term which accounts for a second hump in the forward rate curve. The

inclusion of this term increase the flexibility of the curve and improved the data fit. The functional

form of the forward rate curve specified by Svensson (1995) is:

f(τ) = β0 + β1e
−λτ + β2λτe

−λτ + β3γτe
−γτ (16)

where θ = (β0, β1, β2, β3, λ, γ) is a vector of parameters to be estimated. Similarly, the location

and size of the second hump is governed by β3andγ. Note that the Svensson model collapses to

a Nelson-Siegel model if β3 = 0. Integrating equation (16) (with respect to τ) from 0 to τ and

dividing the result by τ resulted in the continuously compounded spot rate curve:

ic(τ) =β0 + β1

(
1− e−λτ

λτ

)
+ β2

(
1− e−λτ

λτ
− e−λτ

)
+ β3

(
1− e−γτ

γτ
− e−γτ

) (17)
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Similar to the Nelson-Siegel model, the Svensson model converges to similar limiting points at

both ends of the curve. The estimation of the Svensson model relies on fitting data to equation

(16) to obtain the beta coefficients, λ and γ parameters.

4 Data and Estimation Issues

4.1 Method of Estimation

In estimating the yield curve, the Svensson method was considered. The procedural method of

estimation adopted in the study follows closely to that of Kladivko (2010).1 The estimation of

the parameters relies on the minimization of the weighted sum of squared deviations between the

actual and predicted bond prices of coupon bonds:

θ̂ = arg min
θ

N∑
i=1

(
Pi − P̂i
PiDM

i

)2

(18)

where N is the number of observed bonds, Pi is the observed dirty price of the coupon bond, θ

is the vector of parameters to be estimated, P̂i is the estimated bond price which is obtain from

the model spot rates, equation (1) the discount function and equation (4) the bond price formula.

Similar to Kladivko, (2010), the inverse of the product of observed bond prices and modified

duration, (1/PiD
M
i ) were adopted as the optimization weight. The continuously compounded spot

rates were obtained under the day count convention of Actual/360 for interest accrued.

The implementation of equation (16) was conducted with Lsqnonlin in MatLab, a nonlinear

least squares algorithm developed in Coleman and Li (1996). Due to its flexibility, Lsqnonlin allows

for setting of the lower and upper bound of parameter(s) to be optimized, hence making it ideal

for estimating parametric models of the yield curve. However, a drawback of the optimization

algorithm Lsqnonlin is its sensitivity to the initial value of λ, (Kladivko, 2010) . Kladivko, (2010)

advised that given the true value of λ, the algorithm converges robustly to the true values of

β parameters of the parametric model of interest. From this he concludes that the Lsqnonlin

algorithm succeeds in finding the global minima. Dispite these pros and cons, the initialization

of the parameters of the models follows closely to that of Kladivko, (2010) and Gurkaynak et al.

(2006).

1The MatLab codes developed by Kladivko (2010)were utilized forthis paper.
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The estimation of parameters of the yield curve may suffer from abrupt changes in their values

from one period to the next. Such changes were referred to as catastrophic jumps by Cairns and

Pritchard (2001). In addressing catastrophic jumps in the estimated level component of the yield

curve, β0, Kladivko (2010) imposes a lower bound on the possible values that λ and γ may assume.

Additionally, Kladivko (2010) restricted β0 to be positive which is in line with the theory. These

constraints give rise to restrictions on the parametric models as pointed out by Kladivko (2010).

Kladivko (2010) further pointed out in his study that the restricted Nelson Siegel model does not

perform much differently when compared to the unrestricted Nelson Siegel model. However, unlike

Kladivko (2010) who relies on daily data for his analysis, this study utilizes quarterly data on bond

prices which makes it difficult to observe catastrophic jumps in the parameter estimates. mean

absoulte

4.2 Data Set

The study utilizes quarterly market values of domestic GOJ bonds reported by domestic market

participants for the period 2014Q1 to 2016Q1. This sample period was chosen because the data

that were available prior to the selected period were perceived to be noisy in relation to the devel-

opments that took place in 2010 and 2012. During the first quarter of 2010, the GOJ conducted a

restructuring of their debt portfolio. The restructuring of the government’s portfolio was due pri-

marily to the chaellenge in servicing the existing debts at the given maturities. As such there was

a shift in most maturities to longer tenor. Similar actions were performed by the government in

the first quarter of 2012. Since then, the government has reduced its participation in the domestic

market significantly.

To date, the existing domestic bond market lags behind that of developed and transitional

states as trades in these instruments are not captured in a formal trading system. In light of this,

the market value reported by the domestic participants at the end of the quarters were used to

extract the average bond prices. The data used in the study came from two primary sources:

Financial Services Commission (FSC) for information on nonbank financial institutions and Bank

of Jamaica (BOJ) for information on deposit taking institutions.

In improving the quality of the estimation, a data filtering process was developed. For the period

under study, the following data cleaning was conducted:
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i Benchmark Investment Notes identified by the GOJ were utilized.2

ii Floating interest rate bonds were excluded since their use in estimating the yield curve is

not straight forward.

iii For each benchmark notes, bond prices that exceed two standard deviations about its mean

were excluded from the analysis so as to minimize possible distortions in the data.

iv No adjustments for tax or coupon effects were made.

v Bonds that were issued for more than one year and mature within six months are excluded

as they distort the liquidity conditions in the market.

vi Bonds that were issued for less than six months that matures over one year were also excluded

from the sample due to their liquidity conditions.

In total, 12 GOJ bonds data were used for the period under study. In fitting the short end of the

curve, the one month, three months and six months Treasury bill rates were utilized. The fitting

of the short end reduces the likelihood of obtaining negative rates or extremely high rates which

is important in the estimation process. A key advantage of the data reported is the richness of

information collected.

5 Estimation Results

Using the above methodology, the Svensson yield curve was estimated for the period March 2014

to March 2016. The evolution of the estimated curve throughout the period was fairly stable as

observed from the parameter estimates (see Figure 1).3 The level parameter of the model fluctuated

around a marginally improving trend within the bands of 8 and 19 percent. With the exception of

the third quarter 2014, the slope parameter of the model posited a slightly upward trend below the

zero mark. Similarly, the curvature parameters (i.e. λ and γ) were slightly trending upward over

the sample period. The interest rate spread between the 10 year and 1 year yields gently sloped

2Includes domestic issued JMD denominated securities that have a noncallable feature.
3It was noted throughout the sample period that there were quarters in which the estimated results of Svensson

model imply over parameterization (see appendix A1). Alternatively, one may estimate a Nelson-Siegel model which
was also considered by the study.
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upwards over the estimation horizon. At the long-end, the spread between 35 year and 10 year

yields, fluctuated around a relative downward sloping trend line. The interest rate spread between

the 1 year and 10 year yields was highest for 2015Q3 where the corresponding spread at the long

end of the curve was lowered.4 This outturn to some extent reflected investors’ preference along

the maturity spectrum for the GOJ’s domestic JMD issues. At the long end of the curve, interest

rate spread was highest for 2015Q1 which corresponded to a decrease in the corresponding interest

rate spread for the 1 to 10 years yields when compared to 2014Q4.5 For the period 2014Q4, interest

rate spreads for 1 to 10 years yields and 10 to 30 years yields recorded positive quarterly growth,

thus reflecting to some extent increased preference for higher yields across the entire maturity

spectrum of the GOJ domestic JMD issue.6 The flattening of the curve at the long end was most

evident for 2014Q3 which reflected the minimum interest rate spread for 10 to 30 years yields over

the sample period.

In sum, the estimated outputs throughout the sample period provided upward sloping yield

curves.7 The fit of the model to the observed sample data was most accurate as at end-2015 as

displayed by the incorporated error measures.

4The 1 to 10 years spread on yields was 4.6 percent reflecting a 10.1 percent increased relative to 2015Q2 while
the 10 to 30 years yield spread was 2.6 percent reflecting a 29.5 percent decline relative to the prior quarter.

5The interest spread between the 10 and 30 year yields was 5.9 percent reflecting 12.7 percent increase while the
1 to 10 years interest rate spread was 4.1 percent reflecting a decline of 2.8 percent.

6The interest spread between the 1 to 10 years and 10 to 30 years yields were 4.2 percent and 5.3 percent
reflecting quarterly increases of 5.3 percent and 178.5 percent, respectively.

7see Estrella and Trubin (2006)
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Figure 1: Estimated Zero-coupon yield curves (continuously compounding) for the
period March 2014 to March 2016
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As an example of the results, the estimated spot, instantaneous forward and par rates for

December 2015 were captured by Figure 2. The rates are presented as annually compounded. There

were 8 government bonds available as at end-2015 with maturities ranging from approximately one

year and four months to approximately thirty five years.
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Figure 2: The Svensson Model for December 2015
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As can be seen from Figure 2, the Svensson curve provides a fair fit of the term structure of

the government’s domestic debt. However, the fit of the curve was poorer at the short-end of the

curve (less than one year) reflecting the idiosyncratic nature of these issues. For the one to five

years maturity bucket, the fit of the 2019 8.5 coupon bond was the worst which appeared to be

overpriced relative to the other bonds. The shape of the estimated spot rate curve was upward

sloping for maturities over three years. At the short end, a U-shaped hump was evident. This

suggests market participants’ expectation of monetary easing by the central bank in the short

term, (Bomfin, 2003).

Similar to Kladivko (2010), the Mean Absoulte Error (MAE), the Root Mean Squared Error

(RSME) and the Maximum Absolute Error (MaxAE) were used to assess the goodness of fit of

the model:

RSME =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (19)
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MaxAE = maxi{|yi − ŷi|}, i = 1, ..., n (20)

where n is the number of government bonds for a given settlement date, yi is the observed yield

to maturity, and ŷi is the fitted yield to maturity. In calculating the error measures, the Treasury

bill rates were excluded from the analysis.8

Table 1: Error Measures for Estimated Yield Curve

‘
Svensson Estimated Yield to Maturity Curve as at end December 2015
RSME (bps.) MAE (bps.) MaxAE (bps.)
3.8 3.3 6.7

The estimated MaxAE which identifies the point of least best fit was associated with the 2018

7.75 percent coupon bond. The MaxAE for the estimated 2015Q4 zero-coupon curve reflected the

overpricing of the 2018 7.75 percent coupon bond relative to the corresponding estimated output.

6 Stress Testing Application of the Yield Curve

The yield curve has many applications that are localized to the intended purposes. For example,

inflation expectation which is of critical importance for monetary policy can be obtained from the

yield curve. Additionally, Estrella and Trubin (2006), investigated the use of the yield curve as

a forecasting tool in real time of macroeconomic conditions. The study employed a probabilistic

model to capture the relationship between key attributes of the curve (i.e. the steepness of the

curve) and the business cycle, for which they found that the yield curve was a good predictor of

recessions.

Seminal work of Ho (1992) utilized non-parallel shifts in the yield curve as an approach for

fixed income portfolio immunization. Ho (1992) investigated the impact of changes in selected

rates along the curve on the pricing of fixed income securities. This approach is currently coined

key rate duration (KRD) and is commonly used among financial market practitioners in developing

hedging strategies for their portfolio holdings.

8The exclusion of the error measures for Treasury bill rates was motivated by the poor fit of the curve at the
short end. In addition, yields on Treasury bill were not collected in the sample.
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This paper applied the key rate model to GOJ’s domestic sovereign portfolio within the context

of assessing interest rate risk exposure. Such applications involved shifting of the zero-coupon curve

through selected key rates for the GOJ domestic JMD bond portfolio. With these key rates, one

has the flexibility to conduct parallel and non-parallel shifts of the curve to provide richer analysis

of bond price movements.

6.0.1 Key Rate Model

For this section, the KRD and Key Rate Convexity measures of interest rate risk are discussed

along the lines of application for stress testing. The KRD as defined by Ho (1992) is a measure

of the price sensitivity of a fixed income security to changes in selected spot rates along the yield

curve. These rates are referred to as the key rates. Ho (1992) who pioneered the application of the

KRD for fixed income portfolio recommended 11 key rates - 1, 2, 3, 4, 5, 7, 9, 10, 15, 20 and 30 years

to maturity. It is important to note that the choice of key rates along the yield curve is flexible

in that one can choose any number of rates rate along the curve. The KRD measure is used by

market practitioners to decompose portfolio returns, identify interest rate risk exposure, design

active trading strategies and implement passive portfolio strategies such as portfolio immunization

and index replication, (Nawalkha, Soto and Beliaeva, 2005).

The use of the key rate model is conditional on the assumption that any smooth change in

the term structure of zero-coupon yields can be represented as a vector of changes in a number of

properly chosen key rates. That is:

∆Y = (∆y(t1),∆y(t2), ...,∆y(tm)) (21)

where Y is the zero-coupon curve and ∆y(ti) for i = 1, 2, ...,m are the set of m key rates. Changes

in all other interest rates are approximated by linear interpolation of the changes in the adjacent

key rates. The shifting of a key rate along the zero-coupon curve, only impacts rates within the

neighborhood of the selected key rate that are bounded to the right and the left by the closest key

rates to our key rate of interest, (Nawalkha, Soto and Beliaeva, 2005). Rates outside of this bound

will be unchanged. The shortest and longest key rates are bounded on one side, the shortest key

rate is bounded to the right by the second key rate while the longest key rate is bounded to the

left by the m − 1st key rate. Thus, shifting the shortest key rate by an amount x results in an

equal amount in shifting rates to the left of the shortest key rate and a linear interpolation of the
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shift in rates to the right of the key rates that are bounded, while leaving rates above the bound

unchanged. Similarly, shifting the longest key rate results in an equal shift of rates to the right of

the longest key rate and linear interpolation of the shift in rates to the left of the longest key rate

that are bounded, while leaving all other rates below the bound unchanged. A generic expression

for the change in the interest rate for any given term t is written as:

∆y(t) =


∆y(tshortest) t ≤ tshortest

∆y(tlongest) t ≥ tlongest

α×∆y(tleft) + (1− α)×∆y(tright) else

(22)

where y(tshortest) and y(tlongest) are the shortest and longest key rates, y(tleft) and y(tright),

with tleft ≤ t ≤ tright, refers to the key rate adjacent (to the left and the right) to term t, and α

and (1− α) are the coefficients of the linear interpolation, defined as:

α =
tright − t
tright − tleft

1− α =
t− tleft

tright − tleft
.

The set of key rate shifts can be used to evaluate the change in the price of fixed income securities.

An infinitesimal shift in a given key rate, ∆y(ti), results in an instantaneous price change given

as:
∆Pi
P

= −KRDi ×∆y(ti) (23)

where KRDi is the i − th KRD. So the key rate is defined as the negative percentage change in

the price of a given fixed income security resulting from the change in the i− th key rate:

KRDi = − 1

P

δP

δy(ti)
. (24)

Alternatively, the duration of the i− th key rate is defined as the negative of the elasticity of the

price of a given fixed income security to the i− th key rate relative to the i− th key rate:

KRDi = − ep,i
y(ti)

, (25)

where ep,i is the elasticity of the price to the i − th key rate. The application of the key rate

model is fairly straight forward. First, we calculate the KRD for each of our 5 key rates using the
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formula:
δP

δy(ti)
=

δP

δy(t)

δy(t)

δy(ti)
= −CFt × t

ey(t)×t
δy(t)

δy(ti)
. (26)

By substituting equation (22) into (18) we have:

KRDi = t× δy(t)

δy(ti)
, (27)

where t is the time to maturity. Observe that the KRD is an increasing function of time. Thus key

rates at the long end of the curve would have a greater responsiveness of price changes to interest

rate changes.

The total price change resulting from all key rate changes is given as:

∆P = ∆P1 + ∆P2 + ...+ ∆Pm

= −
m∑
i=1

KRDi ×∆y(ti).
(28)

The sum of the KRD measures from a simultaneous shift in all the key rates by the same amount

result in the traditional duration of a given fixed income security. Thus, the KRD measure only

account for the linear effect of key rate shifts. Under a non-infinitesimal shift in the term structure,

the KRD framework is extended to account for second-order nonlinear effects of such shift. The

nonlinear effect of the key rate shifts is called the Key Rate Convexity (KRC) and is defined as:

KRC(i, j) = KRC(j, i) =
1

P

δ2P

δy(ti)δy(tj)
(29)

for every pair (i, j) of key rates. Similarly, the sum of the KRC measures from a simultaneous

shift in all the key rates by the same amount result in the traditional convexity of a given fixed

income security. The KRDs and KRCs of a portfolio can be obtained as the weighted average of

the KRD and KRCs of the securities in the portfolio.

The following section discusses the selection of the key rates that will be used in our KRD

model to conduct parallel and non-parallel shifts of the yield curve. Such shifts of zero-coupon

curve will be governed by scenario analyses that are acceptable industry practices.

6.1 Application of the Key Rate Model

The choice of key rates as pointed out by Zeballos (2011) is arbitrary owing mainly to the absence

of unique fundamentals. In acknowledgment of this gap in the model framework, Nawalkha et
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al. (2005) proposed that the choice of key rates can be guided by the maturity structure of the

portfolio under consideration. As such, the choice of key rates for this analysis will be guided by

the structure of the government’s domestic fixed income portfolio.

As at end March 2016, total outstanding JMD denominated government’s issue was approxi-

mately J$233 billion in nominal value for fixed coupon bonds and J$508 billion in nominal value

for variable coupon bonds which is unevenly distributed across 33 issues. This outstanding debt

issue is sparsely distributed across the maturity spectrum of the yield curve. Approximately 50

percent of the outstanding debt matures within the next three years while 21 percent falls within

the maturity range 20-35 years (see Figure A1).

For this study five key rates were considered for varying reasons, the 1 year and 5 year were

chosen as the major share of the government’s domestic bond portfolio was at the short end, the

10 year key rate was reasonably viewed as a point along the curve ideal for conducting various

shifts in the shape of the curve. For example the butterfly shift of the curve as well as a tilt of the

curve could be facilitated by fixing the ten year key rate. The 20 and 30 year key rates provides

useful analysis of the long end of the curve and are in line with the long-term maturity’s share of

the government’s fixed income portfolio.

The result of our key rate application is presented in Figure (3). To calculate the KRD for the

bond portfolio a shift of 100 basis points was applied to each of the key rates. Then, for each key

a weight was assigned to each maturity conditional on the portfolio maturity spectrum. So for

example, rates that had time to maturity of 1 year or less were assigned a weight that represents

the share of nominal issues that mature within 1 year. Likewise, rates 1 to 2 years was assigned a

weight of nominal issues that mature one to two years.
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Figure 3: Key Rate Duration

As evident in Figure (3), the portfolio has a larger expositions over the medium to long-term.

Specifically, the exposition for the 30-year key rate dominates the bond portfolio followed by the

20-year key rate.9 This means that the bond portfolio is more sensitive to changes in the long

end of the yield curve. Zeballos (2011) pointed out in a recent study that a concentration in the

KRD at long end of the term structure may indicate an expectation of the flattening of the yield

curve.10

6.2 Stress Testing Application of Yield Curve Shifts

As part of the Bank’s interest rate stress test, scenario shifts in the yield curve are considered.

This paper utilizes key rates to conduct parallel and non-parallel shifts in the yield curve. For a

parallel shift in the yield curve, equal shifts in the selected key rates are considered. Nonparallel

shifts in the yield curve amount to unequal shifts in the key rates. Specifically, an upward tilt of

the yield curve at the 10-year key rate is achievable through an upward shift in key rates to the

left of the 10-year key rate while simultaneously shifting the key rates to the right downwards. In

9A KRD of 50 for the 30-year key rate means that a 100 basis points change in the 30-year key rate would lead
to 50 percent reduction in the weighted aggregated value of the GOJ domestic JMD portfolio cash flows that have
a maturity period greater than 20 years.

10Similarly, the KRC for the bond portfolio was also calculated. The result of the KRC was in some sense similar
to the outcome of the portfolio’s KRD and are not included in the analysis for ease of explanation.
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the case of the domestic fixed income sovereign issues, four cases are considered for illustration:

(1) a parallel upward shift of the yield curve, (2) a flattening of the curve at the short end up to

10-year, (3) an increase in premiums for medium tenors and (4) a steepening of the curve at the

long end of the maturity spectrum. The assessment of each scenarios will be conducted based on

changes of stress levels of 20, 50 and 100 percent in the yields, respectively.

6.2.1 An Upward Parallel Shift of the Yield Curve

A parallel shift of the curve is supported by the notion of investors requiring equal premiums

across the term structure due to higher perceived risk of government’s ability to repay its debt.

Such shift of the curve is accomplished by increasing the key rates by similar amount. The study

considered 20, 50 and 100 percent increases in the key rates simultaneously across the estimated

term structure. The new yield curve was then used to evaluate fair value losses11 for portfolio

holding of deposit taking institutions (DTIs), securities dealers and insurance companies.12 The

results of the parallel shift of the curve showed an impairment to capital base of DTIs of 5.4 percent

resulting from a 100 shock to the yield curve (see Figure 4).13

11Fair value loss is define as the difference in value of GOJ domestic J$ portfolio holdings resulting from changes
in yields.

12Currently, the deposit taking subsector comprises of six commercial banks, three building societies and two
merchant banks. These institutions account for approximately 50 percent of the total financial system’s assets.

13Impairment to capital for each sub-sector is define as the fair value loss divided by total accounting capital
holding.
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Figure 4: Box-plot of the Ratio of Fair Value losses to Capital for the Deposit Taking
Institution Sector for Parallel Shifts of the Yield Cuve

A 20 percent increase in the term structure had a marginal impact on the fair value losses of the

DTI sector (1.4 percent loss in capital) while at a 50 percent shock levels, impairments to capital

was 3.1 percent (see Table B1 in Appendix B). The impact of the 100 percent shock threshold

level on individual institutions within the DTI sector resulted in no significant impairment to their

capital adequacy ratio (CAR); hence, indicating that the DTI sector is adequately capitalized to

withstand such shocks in the yields on government’s domestic issues.

The result of the analysis revealed that securities dealers were more susceptible to parallel shifts

of the curve than DTIs. The sector’s impairment to capital from a 100 percent upward shift of the

term structure was 19.4 percent (see Table B1 in Appendix B). A 20 percent increase in the term

structure would resulted in an impairment to securities dealers capital of 5.1 percent (see Figure

5) while a 50 percent increase in rates resulted in impairment of 11.3 percent.
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Figure 5: Box-plot of the Ratio of Fair Value losses to Capital for the Securities Dealer
Sector for Parallel Shifts of the Yield Cuve

At the 50 percent shock level, one institution fell below the CAR prudential minimum level of

10 percent. The outcome further deteriorated at the 100 shock level where two institutions fell

below the CAR prudential minimum level.

An assessment of the insurance industry revealed that fair value losses from a 100 increase in

rates across the term structure accounted for 46.7 per cent of the life insurance sub-sector capital

base. Exposure to the life insurance subsector on the other hand was less than 10 per cent of their

capital base (see Table B1 in Appendix B). At the 100 per cent shock level, fair value losses across

all three sectors of the market was highest for the insurance sector (specifically the life insurance

sector, which accounted for 54 percent of total losses of JMD 47.6 million).
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Figure 6: Box-plot of the Ratio of Fair Value losses to Capital for the Insurance Sector
for Parallel Shifts of the Yield Cuve

6.2.2 Flattening of the Yield Curve at the Short End

A hypothetical flattening of the yield curve were considered, in which the 1-year and 5-year key

rates increase by 20, 50 and 100 percent, respectively. Such movement in the curve would result

in greater impact on portfolios holdings that are concentrated within maturities of up to 5 years.

Exposure to the flattening of the curve at the short end was minimal for DTIs and securities dealer

sectors. At the 100 per cent shock level fair value losses for DTIs and securities dealers amounted

to 2.5 percent and 3.7 percent of their capital base, respectively (see Figures 7 and 8 and Table

B1 in Appendix B).Similarly, exposure for the insurance sector was also minimal in comparison

to a parallel shift of the curve (see Figure 9). Across the insurance sub-sectors, exposures at

the respective shock levels were higher for the life insurance sub-sector. Additionally, across the

market, the life insurance sector had the greatest exposure to the stress testing of the short-end of

the curve followed by the DTI sector.
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Figure 7: Box-plot of the Ratio of Fair Value losses to Capital for the Deposit Taking
Institution Sector for Non-parallel Shifts of the Yield Cuve

Figure 8: Box-plot of the Ratio of Fair Value losses to Capital for the Securities
Dealers Sector for Non-parallel Shifts of the Yield Cuve

6.2.3 An increase in Premiums for medium tenures along the curve

A hypothetical increase in yields along the medium term tenures (i.e. 5 to 10 years) of the curve

were considered as an increase in the demand for premiums along these tenors by investors. To

simulate such changes in the yield curve the 5-year key rate was adjusted upwards at the respective
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shock levels. The adjustment in the five year key rate would impact yields that are greater than

the 1-year key rate up to the 5-year key rate and above the 5-year key rate but less than the

10-year key rate. The fair value exposure to the movement along the curve was similar to that

of a flattening of the curve at the short end for the insurance sector (see Figure 9 and Table B1

in Appendix B). While for the DTIs and securities dealers, such movement along the curve would

resulted in lower exposure when compared to a flattening of the curve at the short end. At the

100 percent shock level, fair value losses relative to capital were 1.5 and 2.4 percent for DTIs and

securities dealers, respectively (see Figures 7 and 8). Similarly, exposure to movements in the

medium term tenures was greatest for the life insurance sub-sector across the market.

Figure 9: Box-plot of the Ratio of Fair Value losses to Capital for the Insurance Sector
for Non-parallel Shifts of the Yield Cuve

6.2.4 A steepening of the curve at the long end of the maturity spectrum

A hypothetical increase in yields along the long end (i.e. above 10 years) of the curve were

considered reflecting increase uncertainty of long-term macroeconomic conditions by investors. To

simulate such movements in the yield curve, the 20-year and 30-year key rates were stressed at the

respective shock levels. Relative to prior segmented shifts along the curve, exposures for the life

insurance sub-sector was largest for shifts at the long end of the yield curve. At the 100 per cent

shock level, fair value losses from such movement along the curve was 32.2 percent of capital for

the and life insurance sub-sector (see Figure 8 and 9 and Table B1 in Appendix B). Conversely,
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relative to prior segmented shifts along the yield curve, exposures for DTIs and general insurance

sub-sector were smallest for shift at the long end of the maturity spectrum. At the 100 percent

stress level, fair value losses relative to capital were 0.9 percent for DTIs which was the same result

for the general insurance sub-sector (see Figures 7 and 9).

From the respected shifts of the yield curve, it was observed that a parallel shift of the curve

would have the largest impact of the fair value of the portfolio holdings of GOJ domestic securities

across the respective sectors in the above analysis. In relation to non-parallel shifts of the yield

curve, the results of the analysis were to some extent consistent with the fundamental market

practice of the respective sectoral market participants. The life insurance sub-sector was more

vulnerable to the long end of the maturity spectrum which is reflective of the appetite of their

investment horizon. The DTIs and securities dealers on the other hand were more vulnerable to

the medium term segment of the yield curve while the general insurance sub-sector vulnerability

was equally weighted across the short term and medium term segments of the yield curve.

7 Conclusion

This paper estimated the GOJ domestic yield curves from 2014 to 2016 at quarterly frequency.

The estimation of the curves was based on the Svensson model. The model fits the GOJ bond

price data well without being over-parameterized and thus provides a consistent picture of GOJ’s

domestic yield curve evolution. The results from the estimation of the GOJ zero-coupon spot rate

curve shows upward sloping yield curve. With the exception of 2014Q4, investors’ preferences

along the curve varies inversely across the 1 to 10 years and 10 to 30 years segments maturity

spectrum of the GOJ domestic JMD debt portfolio.

Additionally, the estimated yield curve was utilized in an interest rate risk analysis for selected

financial market participant sectors in Jamaica. As a risk assessment exercise, the study inves-

tigated the impact of parallel and non-parallel shifts of the yield curve on the portfolio holdings

of selected domestic financial market participant sectors. The approach of the study relies on the

KRD model for interest rate risk management. The choice of the KRD model was motivated by

non-parallel shift scenarios for the yield curve.

The results from a parallel shift of the estimated yield curve showed that the life insurance sub-

sector was more exposed to such movements in GOJ domestic bond yields relative to other market
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participant groups. In relation to non-parallel shifts of the curve, DTIs and securities dealers

were more vulnerable to shifts in medium term segment of the yield curve. The life insurance

sub-sector was more exposed to the long end of the yield curve while the general insurance sub-

sector exposures were equally weighted across the short to medium term segment of the curve.

The results of the assessment provides useful insights on the financial market structure, which was

consistent with market expectation on the investment horizon for these participants.

The key rate model is a very useful tool for hedging interest rate risk and is used by market

participants along with other tools. In light of the model’s application, there are limitations to its

use. Firstly, the choice of key rates is somewhat subjective. Thus the model offers no guidance

on the choice of the risk factor to be used despite its importance. As a circumvention to this

shortcoming of the model, different numbers and choices of key rates may be selected conditional

on the maturity structure of the portfolio under consideration.

Secondly, the shift in the individual key rates provides an implausible yield curve shape. Further

the shift in the key rates assumes strong correlation of the neighboring rates which may not always

be the case. In addressing this short coming of the model, Johnson and Meyer (1989) proposed

the Partial Derivative Approach (PDA). The PDA assumes that the forward rate curve is split

up into many linear segments and all forward rates within each segment are assumed to change

in a parallel way. Under the PDA each forward rate affects the present value of all the cash flows

occurring within or after the term of the forward rate.

Lastly, the key rate model does not take into account past movements in past yield curves

hence making the model inefficient in describing the dynamics of term structure because historical

volatilities of interest rates provide useful information.
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Appendix A

Figure A10: Holdings of GOJ Domestic JMD Issue by Deposit Taking Institutions
and Securities Dealers for the period March 2014 to March 2016

Figure A11: Disaggregation of the share of GOJ Domestic JMD Issue by Maturity as
at March 2016
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Table A2: Parameter Output

Estimated Parameters for the period 2014Q1 : 2016Q1 (Actual Values)
Date β0 β1 β2 β3 λ γ
2014Q1 0.17 -0.13 -0.15 0.16 0.41 3.81
2014Q2 0.15 -0.11 -0.19 0.16 0.64 2.40
2014Q3 0.08 -0.00 -18.86 18.96 0.18 0.18
2014Q4 0.19 -0.13 28.22 -28.40 0.59 0.59
2015Q1 0.20 -0.12 -0.12 -0.33 2.52 0.38
2015Q2 0.17 -0.11 -22.06 21.93 0.74 0.74
2015Q3 0.15 -0.08 -0.09 -0.19 3.71 0.60
2015Q4 0.18 -0.09 -0.15 -0.09 0.34 7.56
2016Q1 0.15 -0.11 -19.53 19.42 0.83 0.83
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Appendix B

Table B3: Fair value losses relative to capital from key rate shifts of the
estimated yield curve as March 2016

Shock Levels (Percent)
20 50 100

Parallel Upward Shift of the Curve

DTIs 1.4 3.1 5.4
SDs 5.1 11.3 19.4
LIs 14.2 29.6 46.7
GIs 0.5 1.2 6.2

Flattening of the curve at the short-end

DTIs 0.6 1.4 2.8
SDs 0.9 2.3 4.3
LIs 1.4 3.3 6.4
GIs 0.3 0.6 3.5

Increase in medium term tenures along the curve

DTIs 0.8 1.8 3.1
SDs 1.5 3.4 6.1
LIs 3.5 7.9 13.7
GIs 0.3 0.6 3.4

Steepening of the curve at the long-end

DTIs 0.3 0.6 0.9
SDs 1.0 2.3 3.8
LIs 10.2 21.0 32.3
GIs 0.1 0.2 0.9

Key: DTIs- Deposit Taking Institutions sector, SDs Securities Dealer sector, LIs- Life Insur-
ance sub-sector, GIs - General Insurance sub-sector.

32



References

[1] Bomfin A. N., 2003. Monetary Policy and the Yield Curve.Federal Reserve Board, Washington,

D.C.

[2] BIS, 2005. Zero-coupon yield curves: technical documentation Bank for International Settle-

ments, BIS Papers No 25.

[3] Campbell J. and Shiller R., 1991. Yield spreads and interest rate movements: a bird’s eye

view, Review of Economic Studies, 58, pp 495-514.

[4] Coleman T. F. and Li Y., 1996. An interior trust region approach for nonlinear minimiza-

tion subject to bounds, Society for Industrial and Applied Mathematics (SIAM) Journal on

optimization Vol. 6.

[5] Cairns A. and Pritchard D., 2001. Stability of Models for the Term Structure of Interest Rates

with Application to German Market Data, British Actuarial Journal.

[6] Estrella A. and Trubin M. R., 2006. The Yield Curve as a Leading Indicator: Some Practical

Issues.Federal Reserve Bank of New York.

[7] Fisher M., 1996. Fitting and interpreting the US yield curve at the Federal Reserve Board.

[8] Gimeno R. and Nave J. M., 2009. A genetic algorithm estimation of the term structure of

interest rates. Computational Statistics and Data Analysis, 53:2236 - 2250.

[9] Gurkaynak R. S. and Sack B. and Wright J. H., 2007. The U.S. Treasury Yield Curve: 1961

to the Present. Federal Reserve Board, Washington, D.C.

[10] Ho T., 1992. Key Rate Durations: Measures of Interest Rate Risks. Journal of Fixed Income,

September 1992, p. 29-44.

[11] Kladivko K., 2010. The Czech Treasury Yield Curve from 1999 to the Present. Czech Journal

of Economics and Finance, 60, 2010, no. 4

[12] Langrin R. B., 2007. State-Space Estimation of Multi-Factor Models of the Term Structure:

An Application to Government of Jamaica Bonds. Bank of Jamaica

33



[13] Macaulay F. 1938. The Movements of Interest Rates. Bond Yields and Stock Prices in the

United States since 1856, New York: National Bureau of Economic Research.

[14] Nawalkha S. K. and Soto G. M. and Beliaeva N. A., 2005. Interest Rate Risk Modeling: The

Fixed Income Valuation Course, Wiley & Sons, Inc., Hoboken, New Jersey.

[15] Nelson C. R. and Siegel A. F., 1987. ”Parsimonious Modeling of Yield Curves”, The Journal

of Business, 1987, vol. 60, no.4

[16] Svensson L. E., 1994. Estimating and Interpreting Forward Interest Rates: Sweden 1992-1994,

Centre for Economic Policy Research, Discussion Paper No 1051.

[17] Tracey M. Principal Component Value at Risk: An application to the measurement of the

interest rate risk exposure of Jamaican Banks to Government of Jamaica (GOJ) Bonds. Bank

of Jamaica

[18] Waggoner, D., 1994. Spline Methods for Extracting Interest Rate Curves from Coupon Bond

Prices. Federal Reserve Bank of Atlanta Working Paper, no. 97-10

[19] Zeballos D., 2011. Market Risk Measurement: Key Rate Duration as an asset allocation

instrument. Central Bank of Bolivia

34


